ScaRLS: Scalabe Robot Learning System
for Robot Manipulation

Agibot Team

Abstract—In the field of robotic manipulation, achieving both
high generalization capability and high reliability (i.e., high task
success rates) remains a central challenge. A critical bottleneck
constraining current system performance is the insufficiency of
data space coverage—specifically, the robot’s exploration and
comprehension of the state space (comprising both observations
and actions) are severely limited. To overcome this bottleneck,
this paper proposes ScaRLS (Scalable Robotic Learning System),
a scalable learning framework designed for robotic manipulation
tasks. By leveraging a distributed edge computing architecture,
ScaRLS facilitates the acquisition of broader data distributions
and enables efficient learning from such data.

ScaRLS establishes a complete system closed-loop featuring
asynchronous data collection (incorporating both autonomous
model inference and human-in-the-loop intervention), asyn-
chronous training, and asynchronous parameter distribution.
This architecture not only accelerates the workflow of individual
computing nodes but also enables large-scale data acquisition and
high-efficiency learning by scaling up the number of computing
nodes. Furthermore, the system demonstrates robust versatility,
offering adaptability to diverse algorithmic models and robotic
embodiments.

1. INTRODUCTION

Learning-based approaches, including Deep Reinforcement
Learning (DRL) [8, 26, 28, 9, 20] and Imitation Learning
L) [7, 32, 3, 4], have enabled steady progress in robotic
manipulation. These methods have been applied to tasks rang-
ing from pick-and-place to contact-rich manipulation [24, 10],
such as connector insertion and furniture assembly. Never-
theless, achieving robust and reliable performance outside
controlled laboratory settings remains a central challenge for
real-world robotic systems.

In practical deployment, robotic policies must operate under
distribution shifts caused by unseen objects, varying illumina-
tion, background clutter, and changes in physical parameters.
Under such conditions, learned policies often exhibit brittle
behavior, including performance degradation and unexpected
failures [5]. A key contributing factor is that most robotic
learning pipelines rely on single-agent physical interaction,
where data collection is inherently slow and costly. This
limitation prevents sufficient coverage of long-tail regions of
the state—action space, resulting in policies that overfit narrow
training conditions and generalize poorly to new environments.

From a system-level perspective, these failures are closely
tied to how data is generated. In domains such as computer vi-
sion and natural language processing, robust generalization has
been driven by the combination of large-scale datasets [18, 29]
and expressive foundation models [19, 27]. In contrast, robotic
manipulation data must be acquired through physical inter-
action, making scale fundamentally constrained by hardware

availability, human supervision, and deployment logistics. As
a result, improving generalization in robotic manipulation
requires not only advances in learning algorithms, but also
learning systems that explicitly account for the process of data
acquisition in the physical world.

We view scalable robotic learning through two comple-
mentary dimensions of data expansion. The first is explo-
ration depth, which focuses on acquiring informative and
corrective data within a single-agent setting. Human-in-the-
loop learning methods [24, 17, 21, 23] have demonstrated that
expert intervention can effectively guide robots out of failure
states and back toward valid behaviors [2], enabling efficient
exploration of difficult regions of the state space [31]. The
second dimension is exploration breadth, which emphasizes
parallel data collection through multi-agent or cluster-based
deployments [11, 22], allowing broader state—action coverage
via concurrent physical interaction.

While both exploration depth and breadth have been stud-
ied independently, existing learning systems typically address
them in isolation. Systems optimized for sample efficiency
and human supervision at the single-agent level (e.g., HIL-
SERL [25]) are difficult to scale due to limited human
bandwidth [6]. Conversely, large-scale learning infrastructures
designed for high-throughput data collection often treat scala-
bility primarily as a training-time concern, abstracting away
how data is physically generated, corrected, and deployed
on real robots. This separation creates a disconnect between
single-agent development and multi-agent deployment, making
it difficult to iteratively scale robotic learning systems in
practice.

To bridge this gap, we introduce ScaRLS (Scalable Robot
Learning System), a unified robot learning system abstraction
that tightly couples data acquisition, human supervision, and
distributed learning. ScaRLS is designed to support a seamless
transition from single-agent, human-in-the-loop experimenta-
tion to large-scale multi-agent deployment, enabling scalable
data expansion without decoupling learning from real-world
interaction.

ScaRLS is structured around three core components. First,
a foundational algorithm layer enables flexible integration
of diverse learning algorithms and model architectures at the
single-agent level. Second, a cluster expansion layer supports
scalable multi-agent learning through Edge Computing Units
(ECUs), which manage local data acquisition, training, and
deployment, while synchronizing model parameters across the
cluster. Finally, the system is designed for scalable execution,
such that data throughput and training capacity grow approx-

Existing Frameworks ScaRLS (Proposed)

Roplay But Policy Rollout Data Policy
Param Sync Training (Infer/Human) Schedular Training

Logic
Layer
T T T T T
Y A2 A2

¥ ¥
System 2 SG deepspeed ScaRLS
Opt. LLM Megatron (Unified Scheduler)
T
v v M
[O PyTorch J [O PyTorch J
T T T
[¥ J ¥ ¥

Cloud GPU Cluster [Robm Clus(er) [Cloud/Edge GPU Cluster J

Rollout
(Infer)

Infra.
Layer

Hardware
Resource

Fig. 1. Overview of Existing Frameworks vs. ScaRLS. The left side
illustrates traditional fragmented systems where rollout and training are
isolated. The right side demonstrates our proposed ScaRLS architecture, which
introduces a unified scheduler to orchestrate heterogeneous resources (Robots
and Cloud GPUs) for efficient data generation and policy training.

imately linearly with the number of deployed robots.

II. RELATED WORK

A. Single-Agent Learning Paradigms

The central challenge in single-robot learning lies in over-
coming the prohibitive costs of physical interaction, necessitat-
ing the maximization of information gain from each interaction
to enhance sample efficiency. Prior work primarily focused on
leveraging static expert datasets, where Imitation Learning (IL)
methods sought to circumvent exploration risks by reproducing
expert demonstrations. However, classical Behavioral Cloning
(BC) [30] is susceptible to the covariate shift problem,
which can lead to policy failure during deployment. While
the subsequently proposed DAgger [17] algorithm provides
theoretical convergence guarantees, its reliance on continuous
online expert corrections imposes a significant human bottle-
neck when applied to physical robotic systems.

To bridge the gap between expert guidance and autonomous
exploration, the paradigm of Human-in-the-Loop Reinforce-
ment Learning (HIL-RL) [25] has emerged. Exemplified by
systems like HIL-SERL, this approach positions the human
as both a real-time instructor and a safety guardian. By
integrating three distinct phases—reward function construc-
tion, demonstration-guided exploration, and online interven-
tion—such systems have achieved superior sample efficiency
in complex, contact-rich tasks. Nevertheless, a fundamental
limitation lies in the required 1:1 human-robot ratio. The
necessity for the human operator to maintain full attention
on a single agent fundamentally constrains system scalability,
rendering it ill-suited for large-scale skill acquisition.

More recently, Offline Reinforcement Learning and Vision-
Language-Action (VLA) models, grounded in large-scale of-
fline datasets, have emerged as a prominent trend. The RT
series [32], for instance, demonstrates the potential of leverag-
ing massive cross-embodiment data for pre-training to achieve
skill generalization. However, these approaches remain heavily
dependent on the quality and coverage of static datasets. Their
lack of online adaptation and error-correction mechanisms
often limits performance when confronting unseen physical
dynamics or fine-grained manipulation tasks.

B. Distributed Learning Architectures

To surmount the temporal barriers inherent in single-
agent physical learning, Distributed Reinforcement Learning
(Distributed RL) leverages parallelized data acquisition to
achieve scalability. In simulated environments, the Ape-X
[12] architecture achieved orders-of-magnitude improvements
in data throughput by decoupling actors from learners and
utilizing prioritized experience replay. Building on this, R2D2
[16] addressed the issue of state staleness in Recurrent Neu-
ral Networks (RNNs) within distributed settings, laying the
groundwork for handling partially observable tasks. However,
these simulation-centric architectures often overlook the com-
munication latency and synchronization challenges pervasive
in the physical world.

Transferring distributed learning to physical deployments
introduces more stringent constraints. QT-Opt [14] and MT-
Opt [15] stand as landmark achievements in physical robotic
cluster learning. By conducting large-scale, asynchronous
data collection across real-world robot farms over several
months, they demonstrated that complex manipulation skills
can emerge from massive volumes of physical interaction.
Empirical studies suggest that in such physical distributed
systems, asynchronous architectures typically outperform syn-
chronous update methods due to reduced control latency and
higher interaction frequencies. Nevertheless, existing physical
cluster systems predominantly rely on fixed task assignments
and centralized communication topologies, lacking capabilities
for dynamic task orchestration and resource scheduling. This
results in prohibitive hardware costs and insufficient system
flexibility.

C. Infrastructure and Ecosystem

Algorithmic advancements are inextricably linked to the
support of robust infrastructure. In terms of hardware bench-
marks, the ROBEL [I] platform has lowered the barrier
to entry for physical experimentation by providing low-cost,
modular robotic embodiments; however, its software stack
lacks native support for distributed clusters. Simulation bench-
marks such as RLBench [13] offer extensive task suites to
facilitate algorithmic comparison but suffer from a pronounced
sim-to-real gap.

Standardization of the data and software ecosystem rep-
resents another critical direction. Projects like Open X-
Embodiment [29] provide a data foundation for training
generalist policy models by aggregating cross-institutional and
cross-embodiment robot datasets. While open-source frame-
works like LeRobot aim to provide a unified toolchain ranging
from data collection to policy training, they remain in nascent
stages regarding the real-time orchestration and collaborative
training support required for large-scale physical clusters.

III. SYSTEM DESIGN: SCARLS

To efficiently acquire and process diverse robotic obser-
vational state data, we present ScaRLS, a distributed edge
computing system, as illustrated in Fig. 2. The architecture
is defined by two core attributes:

!
Multi-Robot
Observation

Space for
Multi Tasks

e

ScaRLS Cloud Computing Unit

[Ofﬂine Data Buffer]

[Pre Training Policy}

[Sync Pretraining Mndel}

Multi-Scenario
& Embodiment

Model Actor (Robot Machine)

I
Model Inference | |

I

Human Intervention) |
I

Il

I

Model Actor (Robot Machine)

Model Inference

\

ScaRLS Edge Computing Unit 1

Async
Deploy

Async
M—Rollout
Data

Asyne

)
I

[}

I

I

Human Intervention | |

I

v I

a I

Rollout
Data

Deploy Model Checkpoint
Online Training Trigger

Pack Rollout Data

Deploy Model Checkpoint

Online Training Trigger

Training
I

| Async ! Model Learner (Computing Machine))
| Deploy
I : [Ckpt Sel.][All-Reduce H— 1-,
=== I W I 1
I No : o
| Start : Eval on Train ‘ :
| Model ‘ !
I
I

| Asyne
| Deploy
I

1

| Start

| Model
[Training

Generalization

: [Post Training Policy]

Global :
Gradient
Syne by
Weights |

1
1 S, A\l 1
| Model Leamer (Computing Machine) | .

1

((cxpr sel.) ((All-Reduce |

| I
=3
| |
I [Post Training Policy] |

Fig. 2. Overview of the ScaRLS Framework. The system is composed of three main modules: (1) Multi-Robot Observation Space, which aggregates sensory
data from diverse robot embodiments (e.g., mobile manipulators, robotic arms); (2) The core ScaRLS Computing Architecture, featuring a hierarchical Cloud-
Edge design. The Cloud Unit manages the global offline data buffer and synchronizes the pre-training model, while multiple distributed Edge Computing Units
(ECU) handle local model inference, asynchronous data collection (Rollout), and local gradient updates (All-Reduce); (3) Multi-Scenario & Embodiment
Generalization, demonstrating the system’s capability to deploy learned policies across various real-world tasks (e.g., object manipulation, cloth folding) and

hardware platforms through global weight synchronization.

« Edge-based Online Post-Training. It enables immediate
model refinement directly on edge devices.

o Scalable Data Acquisition and Synchronization. By
scaling the number of edge nodes, the system expands
the accessible observational state space. When combined
with distributed parameter synchronization, this facilitates
the continuous evolution of a progressively more robust
post-trained policy.

In the following sections, we detail the architectural compo-
nents and operational workflow of ScaRLS.

A. System Architecture

ScaRLS is composed of multiple Edge Computing Units
(ECUs). Architecturally, each ECU comprises a physical robot
paired with a computational workstation. The software stack
within an ECU is structured into three primary modules: the
Model Actor, the Data Scheduler, and the Model Learner.

1) Model Actor: Running on the physical robot (or real-
time controller), the Model Actor executes model inference
and facilitates human intervention. It is responsible for trans-
mitting data generated from both autonomous inference and
human takeover events to the Data Scheduler. The Model
Actor is implemented as a hardware-agnostic software frame-
work, enabling seamless deployment across diverse robotic
embodiments. Its core control logic relies on a Finite State
Machine (FSM) to manage the interleaved execution of au-
tonomous model inference and human intervention loops as
shown in Algorithm 1.The detailed transition logic is illus-
trated in the software architecture diagram Fig. 3.

Algorithm 1 Robot Control Loop

Require: Init state sy, Controller C, Model 7y
1: state < s
2: while true do

3: if state = INIT then

4: RESETPOSE()

5: state <— INFERENCE

6: else if state = INFERENCE then

7: obs < env.GETOBS()

8: a < 7y (obs)

9: env.STEP(a)
10: else if statre = HUMANINTERVENTION then
11: obs < env.GETTELEOBS()
12: env.STEP(obs)
13: else if state € {SUCCESS,FAIL} then
14: actor.LOG(state)
15: if actor NEEDCHECKPOINT() then
16: actor.RELOAD()
17: end if
18: RESETPOSE()
19: state < IDLE
20: end if

> Wait for external signal

21: state < C.GETSIGNAL()

22: end while

2) Data Scheduler: Hosted on the workstation, the Data

Scheduler serves as the data orchestration hub. It receives
rollout data, formatting and persisting it for training purposes.
Furthermore, it triggers the Model Learner for online training
sessions and deploys the latest model parameters from the
Learner back to the Model Actor. Functioning as the central

orchestration hub, the Data Scheduler governs data persistence,
training triggers, and model deployment. It operates as a
reactive service handling two primary request types from the
Model Actor:

(a) Rollout Data Ingestion The scheduler receives in-
coming interaction data and executes high-throughput
serialization to disk.

(b) Checkpoint Synchronization Upon request, it verifies
the availability of updated checkpoints from the Model
Learner and disseminates them to the Actor. Further-
more, the Data Scheduler dictates the learning cadence
by triggering the training process immediately upon
episode completion and continuously monitoring the
pipeline for the generation of new model checkpoints.

3) Model Learner: Also residing on the workstation, the
Model Learner functions as the training engine. It monitors
training data availability, executes the model training loop, and
performs model validity assessments. Crucially, it manages the
synchronization of model parameters across multiple ECUs
in the cluster. The Model Learner encapsulates a standard
online post-training pipeline. It continuously streams episode
data for real-time updates while periodically assessing model
validity via Open-Loop Evaluation. The resulting evaluation
metrics serve as weighting factors for a distributed Weighted
All-Reduce operation across cluster nodes. Subsequently, a
Checkpoint Selector validates the synchronized parameters
via a secondary Open-Loop test; only models surpassing a
predefined performance threshold are flagged to the Data
Scheduler for deployment.

B. Operational Workflow

The operational workflow of ScaRLS is depicted in Fig. 3
and Algorithm 2, proceeds as follows:

Initially, the Model Actor requests the target policy (model)
from the Data Scheduler. Upon receipt, the Actor initiates
model inference. In instances of inference failure or devia-
tion, human teleoperation intervenes to correct the trajectory.
Data generated from both autonomous inference and human
intervention is uploaded to the Data Scheduler for packaging
and storage.

Upon receiving an episode-completion signal from the Ac-
tor, the Data Scheduler generates formatted episode data and
triggers a training signal. When the Model Learner receives
this signal, it commences the training process. Simultaneously,
the Learner performs an online assessment of the current
policy’s validity by constructing an evaluation metric via
open-loop testing. Based on this metric, weighted parameter
synchronization is executed across the ECU cluster.

After a designated number of training iterations, the Model
Learner issues a checkpoint synchronization signal, prompting
the Data Scheduler to update the Model Actor with the latest
checkpoint. The entire pipeline of data acquisition and model
training operates asynchronously to maximize throughput.

Algorithm 2 System Coordination Protocol

Require: Shared Storage ., Model Registry #
Process 1: Model-Actor (Data Producer)

1: procedure RUNINFERENCELOOP

2 0 < % .FetchLatestModel()

3 loop

4: T « InteractWithEnvironment(6)

5: UploadData(.~, 1)

6.

7

8

if EpisodeFinished(7) then
NotifyScheduler(NewEpisode)

: end if
9: if % HasNew Version() then
10: 0 + % .FetchLatestModel()
11: end if
12: end loop
13: end procedure

Process 2: Data-Scheduler (Coordinator)

14: procedure ONDATANOTIFICATION
15: 2 + ScanAvailableData(.¥)
16: if CheckQuality(2) A TimeSinceLastTrain() > Tiperval then

17: P + GenerateDataset(2)
18: TriggerTraining(Learner,)
19: end if

20: end procedure

Process 3: Model-Learner (Consumer)
21: procedure TRAINANDEVALUATE(%)
22: Oirain < LoadCurrentPolicy/()
23: 0’ < TrainOnBatch(6y, B)
24: Seval < EvalOnTrain(6")
25: if seya > Threshold then

26: BOsync <+ SyncParam(6’)
27: CheckpointSelector (8sync)
28: Z Publish(Osync)

29: else

30: discard 6’

31: end if

32: end procedure

C. System Scalability

Algorithmic Scalability: Enhanced Policy Generaliza-
tion. Scaling the number of Edge Computing Unit (ECU)
nodes inherently expands the distributional coverage of the
acquired data. By integrating this broadened data landscape
with distributed parameter synchronization, ScaRLS achieves
a joint modeling of the global state-action distribution. Con-
sequently, increasing the node count theoretically correlates
with improvements in the robustness and capability of the base
policy.

Engineering Extensibility: Pipeline Integration. From an
engineering perspective, ScaRLS is designed as an open-ended
data engine. The interaction data generated by distributed
Model Actors can be aggregated to cloud storage, serving as a
foundational dataset for subsequent stages of large-scale pre-
training or facilitating further downstream model development.

IV. EXPERIMENTS

A. Implementation Details

1) Hardware Configuration: The fundamental building
block of our infrastructure is the Edge Computing Unit (ECU),
established via a local network connection between a robotic

(Inf. j(Intervention j(Inf. j(Int.][Inf.][Interv j[Inference][Intervlention j(InfereAnce]
| S — '
)) v :
Replay Buffer Zarr Ep. 1 Ep.2 Zarr Ep. 3 Zarr Ep. 4 '
‘ 'i);pioy‘ —————— ,
¢ x Low v OK
(Train D (EaD) e G Train)(Eva onud

Failed

Fig. 3.

| |) Time

Fixed Step Intervals

System architecture with asynchronous periodic deployment. The framework operates asynchronously across three layers: Model-Actor (generating

experience), Data-Scheduler (managing replay buffers), and Model-Learner (training). Abbreviations: Inf.: Inference; Int./Interv.: Intervention; Ep.: Episode;
Sel.: Model Selection; Red.: Parameter Reduction (All-Reduce). The timeline illustrates two update cycles: (1) A failure scenario (x Low), where the evaluation
metric is insufficient. Consequently, the reduction and selection steps are skipped (indicated by dashed/gray nodes), and no deployment occurs. (2) A successful
update (v OK), where the evaluation meets the threshold, triggering the weighted parameter all-reduce and selection, finally leading to a Deploy event that

updates the actor’s model.

platform and a computational workstation. In our reference
implementation, we utilize the Arx-robotics AcOne platform.
The robot is equipped with an NVIDIA RTX 5080 GPU
for real-time inference and the paired workstation utilizes an
NVIDIA RTX 4090D GPU for training and heavy processing.
Communication within the ECU is facilitated by a high-
speed Gigabit Ethernet interface via a dedicated router. The
architecture supports the scalable deployment of multiple such
ECU nodes to form a cluster.

2) Software Environment: Within a single ECU node, the
throughput of data serialization (logging) and retrieval (load-
ing) constitutes a critical performance factor. To maximize effi-
ciency, we developed a custom data management backend built
upon Zarr. This module is responsible for the high-frequency
persistence of heterogeneous data streams, originating from
both model inference and human intervention and ensures
efficient, chunked data loading during the training phase. The
specific data schema is defined as follows:

/zarr_data/

L {task_name}/
episode_0.zarr
episode_0_meta. json

episode_1l.zarr

episode_1_meta. json

Fig. 4. Hierarchical data structure implementation.

We implement the policy learning framework using PyTorch
2.7.1. To ensure system robustness and minimize deployment
gaps, we maintain a unified computational backend for both
the training and inference phases.

B. System Performance Analysis

In this section, we characterize the I/O and latency perfor-
mance of a standalone ECU node.

TABLE I
DATA SCHEMA OF THE ZARR STORAGE BACKEND. T DENOTES THE
SEQUENCE LENGTH OF AN EPISODE.

Group / Key Description Data Type Shape
observation/ Sensory inputs group - -
top Top-down RGB camera uint8 (T,H,W,3)
left Left-side RGB camera uint8 (T,H,W,3)
right Right-side RGB camera uint8 (T,H,W,3)
obs_state Proprioceptive state float32 (T, Dgate)
action Robot control commands ~ float32 , Daction
TABLE II
COMPARISON OF DATA LOADING EFFICIENCY.
Method Avg. Load Time (s) | Speedup 1
Lerobot (v0.3.3) 0.2052 1.0x
Lerobot (v0.4.1) 0.2083 ~ 1.0x
Ours (Zarr) 0.0250 8.21x

1) Data Persistence Throughput: We benchmarked the data
loading efficiency of our proposed Zarr-based data loader
against the widely adopted Lerobot (v0.3.3) framework in
Table II. Experiments were conducted under identical hard-
ware and operating system configurations. The data samples
consisted of image tensors with shape (3,3,480,640) (int8)
and action vectors of shape (50,14) (float32). We report
the mean wall-clock time averaged over 100 iterations.

2) Data Loading Throughput: We analyzed the system
latency using the xVLA model (0.9B parameters) as a
case study(Table IIT). With bfloat16 precision, the model
weights occupy 1.7GB. The robot operates at a control
frequency of 30Hz. Model inference is performed asyn-
chronously with chunked execution, resulting in an inference
latency of 30ms. Similarly, the latency for human teleoper-
ation takeover aligns with the control loop at 30 ms. Model
training was conducted on an NVIDIA RTX 4090D GPU,
where a single training iteration (forward and backward pass,
batch size = 1) requires 90 ms.

TABLE III
SYSTEM LATENCY BREAKDOWN. THE EVALUATION INVOLVES 500
ALTERNATING STEPS OF MODEL INFERENCE AND HUMAN INTERVENTION,
FOLLOWED BY 3000 TRAINING STEPS.

Stage Description Time
Data Collection & Storage
Rollout 500 steps (Inference/ Intervention) 15s
Persistence Saving rollout data to disk 5s

Cloud Training (3000 Steps)

Loading Loading data from disk 75 s
Computation Forward & Backward pass 270 s
Deployment

Sync Weight sync to edge 15s
Total Loop Latency

Sync. Sequential: T,y + Tirain + Tsyne 380 s
Async. Parallel: max(Tyo11, Tirain) + Tovha 345 s

C. Multi-Machine Experiment

In this subsection, we present the results of the multi-
machine experiments conducted alongside single-machine
tests. The objective was to evaluate the scalability and effi-
ciency of our proposed framework under varying operational
conditions.

In this study, we utilized the ACT model with a ResNet-
18 backbone as the underlying architecture. The optimization
was carried out using the Adam optimizer, configured with an
action chunk size of 30 and a learning rate of 0.0001. Both the
single-machine and multi-machine training setups were con-
ducted for a total of 15,000 steps. This configuration allowed
us to thoroughly assess the performance of our approach across
different experimental conditions.

Table IV presents a comparison of the experimental results
obtained from the single-machine and multi-machine setups.
Specifically, it reports four key metrics: the number of online
samples, training time, open-loop validation error, and task
success rate.

« For the Online Samples, the single-machine setup pro-
duced 20 samples, while the multi-machine setup doubled
this to 40 samples, indicating an advantage in sample
availability with the multi-machine approach.

e In terms of Training Time, the single-machine con-
figuration required 3150 seconds to complete training,
whereas the multi-machine configuration took slightly
longer at 3160 seconds, suggesting that the time overhead
is relatively comparable between the two setups.

o The Open-Loop Validation Error showed that the
single-machine model had an error rate of 0.02075,
compared to a significantly lower rate of 0.01130 for the
multi-machine model, highlighting the improved accuracy
achieved with the multi-machine training.

« Lastly, the Task Success Rate indicated that the single-
machine approach yielded a success rate of only 10%,
while the multi-machine method achieved a notable
success rate of 70%, demonstrating its effectiveness in
accomplishing the task objectives.

Offline
® Online
©® Online Multi Node

Fig. 5. 3D t-SNE visualization of ScaRLS data collection, illustrating the
data distribution across different acquisition methods. Blue represents offline
samples, red represents online samples, and green indicates online multi-node
samples.

Overall, the results presented in this table emphasize the
substantial advantages of multi-machine training in terms of
sample handling capacity, model accuracy, and task success
rate, providing strong support for the findings of this study.

TABLE IV
COMPARISON OF SINGLE AND MULTI-MACHINE EXPERIMENTAL
RESULTS

Metric Single-Machine = Multi-Machine

Online Samples 20 40

Training Time 3150s 3160s
OpenLoop Validation Error 0.02075 0.01130
Task Success Rate 10% 70%

The 3D t-SNE visualization provides critical insights into
the data distribution associated with the ScaRLS data collec-
tion. Notably, the online acquisition method yields a richer
data distribution, as evidenced by the diverse clustering of
data points represented in red. This variety signifies a broad
spectrum of scenarios encountered during training, which is
essential for developing robust models.

In contrast, when assessing the multi-machine setup (de-
picted in green), we observe that it not only retains this
enhanced data distribution but amplifies it. By enabling data
collection from multiple nodes simultaneously, the multi-
machine configuration facilitates a broader range of data
modalities within the same timeframe. This richness in data is
directly linked to the observed improvements in task success
rates. The concurrent processing of information in multi-
machine scenarios provides a significant edge over single
online collections, translating into a marked enhancement in
performance for real-world applications.

Overall, these observations underscore the benefits of em-
ploying online data collection and multi-machine configura-
tions in cultivating more effective and adaptable models.

Analysis: As demonstrated in the results, the multi-machine
setup significantly decreased the OpenLoop validation error to
0.01130 compared to 0.02075 for the single-machine config-
uration. Moreover, the task success rate increased from 10%
to 70%, indicating a marked improvement in performance due
to the parallel capability of multiple machines.

This clear differentiation between single and multi-machine
setups illustrates the efficiency of parallelization in enhancing
overall system performance.

V. DISCUSSION

1) Sources of Efficiency: Multi-robot parallel exploration
not only accelerates data acquisition but also enhances data
diversity through interactions within heterogeneous environ-
ments. This facilitates the learning of policies with superior
generalization capabilities.

2) System Overhead: While communication and synchro-
nization overheads remain negligible with a small number of
robots, further optimization is requisite as the system scales
up.

3) Role of Human Intervention: In both single-agent and
multi-agent learning scenarios, human intervention effectively
guides the exploration process, mitigates ineffective interac-
tions, and thereby elevates the quality of collected samples.

4) Scalability for Large Models: To accommodate compu-
tationally intensive large models, the system’s local compu-
tational workstation can be seamlessly substituted with high-
performance cloud computing infrastructure.

5) Comparison with Contemporary RL Training Frame-
works: The primary distinction between our proposed system
and general frameworks (e.g., RLIlib) lies in the unified consis-
tency between edge and cloud environments. Our framework
ensures that model rollout and training can be executed
interchangeably on either the cloud or the edge. In con-
trast, conventional architectures typically employ edge/cloud
rollout combined with cloud-based training. This separation
often introduces inconsistencies—particularly critical for on-
line learning—stemming from discrepancies in edge-cloud
environments and inference operators.

6) Comparison with DAgger: Relative to the standard
DAgger algorithm, our approach incorporates distributed com-
puting capabilities, enabling scalable and parallelized data
aggregation.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented ScaRLS, a scalable robotic
learning framework designed to facilitate seamless expansion
from single-agent to multi-agent configurations. By leveraging
distributed experience collection and collaborative training, the
system significantly enhances both the sample efficiency and
generalization capabilities of robotic manipulation policies.
Future directions include

« Heterogeneous Robot Coordination: Extending the frame-
work to support collaborative tasks among heterogeneous
robotic fleets;

« Hybrid Sim-and-Real Training: Incorporating parallel
training pipelines that simultaneously utilize simulation
and real-world environments;

o Multi-Task and Transfer Learning: Investigating multi-
task joint learning architectures and advanced mecha-
nisms for skill transfer.

VII. CONCLUSION

ScaRLS represents a significant advancement in the quest
for scalable robotic learning systems. Future work will ex-
plore heterogeneous coordination among robotic fleets, hybrid
training methods combining simulation and real-world data,
and mechanisms for multi-task and transfer learning.

REFERENCES

[1] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo
Ponte, Abhishek Gupta, Sergey Levine, and Vikash Ku-
mar. ROBEL: Robotics Benchmarks for Learning with
Low-Cost Robots. In Proceedings of the Conference
on Robot Learning, Osaka, Japan, January 2020. URL
http://proceedings.mlr.press/v100/ahn20a.html.

[2] Michael Ahn, Debidatta Dwibedi, Chelsea Finn,
Montserrat Gonzalez Arenas, Keerthana Gopalakrishnan,
Karol Hausman, Alex Irpan, Nikhil J Joshi, Ryan Julian,
Sean Kirmani, et al. Autort: Embodied foundation mod-
els for large scale orchestration of robotic agents. In First
Workshop on Vision-Language Models for Navigation
and Manipulation at ICRA 2024, 2024.

[3] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. m0: A
visionlanguage-action flow model for general robot con-
trol, 2024a. URL https://arxiv. org/abs/2410.24164, 2024.

[4] Kevin Black, Noah Brown, James Darpinian, Karan
Dhabalia, Danny Driess, Adnan Esmail, Michael Robert
Equi, Chelsea Finn, Niccolo Fusai, Manuel Y Galliker,
et al. $\pi_{0.5}$: a vision-language-action model with
open-world generalization. In 9th Annual Conference
on Robot Learning, 2025. URL https://openreview.net/
forum?id=vlhoswksBO.

[5] Joseph Oluwatobiloba Bolarinwa, Manuel Giuliani, and
Paul Bremner. Should we get involved? impact of hu-
man collaboration and intervention on multi-robot teams.
Frontiers in Robotics and Al, 12:1526287, 2025.

[6] Hongpeng Chen, Shufei Li, Junming Fan, Anging
Duan, Chenguang Yang, David Navarro-Alarcon, and Pai
Zheng. Human-in-the-loop robot learning for smart man-
ufacturing: A human-centric perspective. IEEE Transac-
tions on Automation Science and Engineering, 22:11062—
11086, 2025. doi: 10.1109/TASE.2025.3528051.

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action

http://proceedings.mlr.press/v100/ahn20a.html
https://openreview.net/forum?id=vlhoswksBO
https://openreview.net/forum?id=vlhoswksBO

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

diffusion. In Robotics: Science and Systems, 2023. URL
https://doi.org/10.15607/RSS.2023.XIX.026.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861-1870. Pmlr, 2018. URL https://proceedings.
mlir.press/v80/haarnojal8b.html.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-
MPC2: Scalable, robust world models for continu-
ous control. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
/lopenreview.net/forum?id=0xh5CstDJU.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J
Lim. Furniturebench: Reproducible real-world bench-
mark for long-horizon complex manipulation. The Inter-
national Journal of Robotics Research, 44(10-11):1863—
1891, 2025.

Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma,
Karthik Dharmarajan, Brijen Thananjeyan, Pieter
Abbeel, and Ken Goldberg. Fleet-dagger: Interactive
robot fleet learning with scalable human supervision. In
Conference on Robot Learning, pages 368-380. PMLR,
2023.

Dan Horgan, John Quan, David Budden, Gabriel Barth-
Maron, Simon Thompson, Hado van Hasselt, and Dan
Silver. Distributed Prioritized Experience Replay. In
Proceedings of the International Conference on Learning
Representations, Vancouver, Canada, April 2018. URL
https://openreview.net/forum?id=H1-p6b9G-.

Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. RLBench: The Robot Learning
Benchmark and Learning Environment. IEEE Robotics
and Automation Letters, 5(2):3019-3026, April 2020.
doi: 10.1109/LRA.2020.2974707.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Holly Holly, Mrinal Kalakrishnan, Sergey Levine, and
Stefan Schaal. QT-Opt: Scalable Deep Reinforcement
Learning for Vision-Based Robotic Manipulation. In Pro-
ceedings of the Conference on Robot Learning, Ziirich,
Switzerland, October 2018. doi: 10.48550/arXiv.1806.
10293.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar,
Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. MT-Opt: Con-
tinuous Multi-Task Robotic Reinforcement Learning at
Scale. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, Xi’an, China, May
2021. doi: 10.1109/ICRA48506.2021.9561081.

Steven Kapturowski, Georg Ostrovski, John Quan, Rémi
Munos, and Will Dabney. Recurrent Experience Replay
in Distributed Reinforcement Learning. In Proceedings
of the International Conference on Learning Represen-
tations, New Orleans, Louisiana, USA, May 2019. URL
https://openreview.net/forum?id=r11y764107.

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

Michael Kelly, Chelsea Sidrane, Katherine Driggs-
Campbell, and Mykel J Kochenderfer. Hg-dagger: Inter-
active imitation learning with human experts. In 2019
International Conference on Robotics and Automation
(ICRA), pages 8077-8083. IEEE, 2019.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas
Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh,
Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
An open-source vision-language-action model. In Pulkit
Agrawal, Oliver Kroemer, and Wolfram Burgard, editors,
Proceedings of The 8th Conference on Robot Learning,
volume 270 of Proceedings of Machine Learning Re-
search, pages 2679-2713. PMLR, 06-09 Nov 2025. URL
https://proceedings.mlr.press/v270/kim25c¢.html.

Kun LEI, Zhengmao He, Chenhao Lu, Kaizhe Hu,
Yang Gao, and Huazhe Xu. Uni-o4: Unifying online
and offline deep reinforcement learning with multi-step
on-policy optimization. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tbFBh3LMKi.

Kun Lei, Huanyu Li, Dongjie Yu, Zhenyu Wei, Lingxiao
Guo, Zhennan lJiang, Ziyu Wang, Shiyu Liang, and
Huazhe Xu. RI-100: Performant robotic manipulation
with real-world reinforcement learning, 2025. URL
https://arxiv.org/abs/2510.14830.

Zhaoxing Li, Yue Wang, Wenbo Wu, Yanran Xu, and
Sebastian Stein. Hmcf: A human-in-the-loop multi-robot
collaboration framework based on large language models.
In International Conference on Principles and Practice
of Multi-Agent Systems, pages 150-167. Springer, 2025.
Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao
Bao, and Yuke Zhu. Robot learning on the job: Human-
in-the-loop autonomy and learning during deployment.
The International Journal of Robotics Research, 44(10-
11):1727-1742, 2025.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan,
Jacob Berg, Archit Sharma, Stefan Schaal, Chelsea Finn,
Abhishek Gupta, and Sergey Levine. Serl: A software
suite for sample-efficient robotic reinforcement learning.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 16961-16969, 2024. doi: 10.
1109/ICRA57147.2024.10610040.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine.
Precise and dexterous robotic manipulation via human-
in-the-loop reinforcement learning. Science Robotics, 10
(105):eads5033, 2025.

Yecheng Jason Ma, William Liang, Hung-Ju Wang, Yuke
Zhu, Linxi Fan, Osbert Bastani, and Dinesh Jayaraman.

https://doi.org/10.15607/RSS.2023.XIX.026
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=Oxh5CstDJU
https://openreview.net/forum?id=Oxh5CstDJU
https://openreview.net/forum?id=H1-p6b9G-
https://openreview.net/forum?id=r1ly7641O7
https://proceedings.mlr.press/v270/kim25c.html
https://openreview.net/forum?id=tbFBh3LMKi
https://arxiv.org/abs/2510.14830

[27]

(28]

[29]

[30]

[31]

[32]

DrEureka: Language Model Guided Sim-To-Real Trans-
fer. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, July 2024. doi: 10.15607/RSS.2024.
XX.094.

Oier Mees, Dibya Ghosh, Karl Pertsch, Kevin Black,
Homer Rich Walke, Sudeep Dasari, Joey Hejna, Tobias
Kreiman, Charles Xu, Jianlan Luo, et al. Octo: An open-
source generalist robot policy. In First Workshop on
Vision-Language Models for Navigation and Manipula-
tion at ICRA 2024, 2024.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh,
Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-gl: Calibrated
offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing
Systems, 36:62244-62269, 2023. URL https:
/lproceedings.neurips.cc/paper_files/paper/2023/file/
c44a04289beaf0a7d968a94066a1d696-Paper-Conference.
pdf.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn
Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain,
et al. Open x-embodiment: Robotic learning datasets
and rt-x models: Open x-embodiment collaboration O.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892—6903. IEEE, 2024.
Tony Z. Zhao, Vikash Kumar, Sergey Levine, and
Chelsea Finn. Learning Fine-Grained Bimanual Ma-
nipulation with Low-Cost Hardware. In Proceedings
of Robotics: Science and Systems, Daegu, Republic of
Korea, July 2023. doi: 10.15607/RSS.2023.XIX.016.
Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete
Florence, Seyed Kamyar Seyed Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple
recipe for robot dexterity. In 8th Annual Conference on
Robot Learning, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu,
Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control.
In Conference on Robot Learning, pages 2165-2183.
PMLR, 2023.

https://proceedings.neurips.cc/paper_files/paper/2023/file/c44a04289beaf0a7d968a94066a1d696-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c44a04289beaf0a7d968a94066a1d696-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c44a04289beaf0a7d968a94066a1d696-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c44a04289beaf0a7d968a94066a1d696-Paper-Conference.pdf

	introduction
	related work
	Single-Agent Learning Paradigms
	Distributed Learning Architectures
	Infrastructure and Ecosystem

	System Design: ScaRLS
	System Architecture
	Model Actor
	Data Scheduler
	Model Learner

	Operational Workflow
	System Scalability

	Experiments
	Implementation Details
	Hardware Configuration
	Software Environment

	System Performance Analysis
	Data Persistence Throughput
	Data Loading Throughput

	Multi-Machine Experiment

	Discussion
	Sources of Efficiency
	System Overhead
	Role of Human Intervention
	Scalability for Large Models
	Comparison with Contemporary RL Training Frameworks
	Comparison with DAgger

	Conclusion and Future Work
	Conclusion

